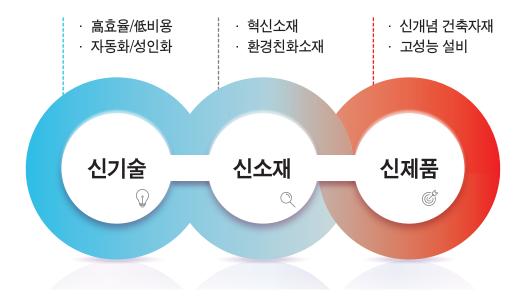
GFRP

Glass Fiber Reinforced Polymer

미래가치와 환경을 생각하는 혁신기업!

안녕하세요. 새로운 가치를 창출하고 고객의 Needs를 먼저 생각하는 GFRP(Glass Fiber Reinforced Polymer)제조업체 ASP입니다. 저희 ASP는 친환경 시대의 선두 주자로서 소재 및 설비의 고품질화에 끊임없는 연구 개발 및 투자로 제반되는 서비스 제공을 목표로 앞장서는 기업이 되겠습니다. 완벽한 품질 관리와 합리적인 가격으로 고객만족을 극대화하고, 최고의 기술력을 갖춘 세계 초일류 기업으로 성장할 것을 약속드립니다.


汝 회사 소개

GFRP 소재의 혁신적인 철근 대체제를 선도하는 ㈜ASP

(주)에이에스피는 건축물의 주재료인 철근을 대체하는 제품으로 철보다 강하고 알루미늄보다 가벼우며, 내부식성과 강한 인장 강도의 특성을 지닌 GFRP소재로 만든 혁신적인 콘크리트 보강근(ECO BAR) 제품 및 자체 설비를 개발하였으며, 철저한 품질관리 시스템으로 생산 기술력과 지속적인 연구 개발을 통해 교량 및 도로공사, 해양구조물 및 풍력, 자동차, 선박, 항공우주, 방위 산업 등 분야에 적합한 복합신소재 해석 및 생산장비를 개발하고 있습니다.

🍌 비전

신기술, 신소재, 신제품을 바탕으로 초일류 기업으로의 도약

FRP 소개

유리및 카본 섬유로 이루어진 플라스틱계 복합재료로, 경량 · 내식성, 고강도 뛰어난 재료

○ 복합재의 종류

GFRP

유리섬유와 플라스틱의 매트릭스로 구성되는 복합재료. 가격이 싸고

염분에 특히 강함

AFRP

아라미드 섬유로 이루어진 복합재료. 가볍고 강하지만 성형이 어려움

CFRP

탄소섬유로 이루어진 복합재료. 내식성, 내화학성이 강하지만 압축강도에 약함

≫ GFRP의 역사

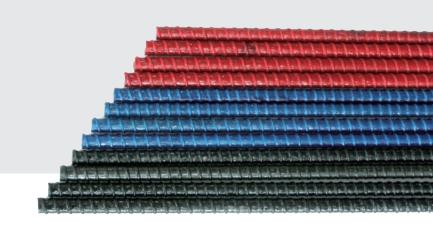
1960	1970	1980	1990 이후
GFRP REBAR 개발	북미지역 중심으로 고속도로 바닥판에 도입 시작	일본, 독일에서 최초 GFRP재료 긴장재를 이용한 고속도로용 교량 건설	미국, 유럽 선진국을 중심으로 복합신소재 FRP재료를 이용한 건설이 활발하게 진행 중

ŷ GFRP 개발 동기

방파제, 댐, 수력 플랜트에 사용하기에 기존 철근콘크리트는 부식이 많아 사용하기 힘들어 다른 대체안을 찾는 중에 GFRP의 특성인 녹과 부식이 발생하지 않아 사용하고 개발되기 시작

기존 철근콘크리트의 단점

- 강도가 약함
- 녹과 부식으로 균열, 파손 일어남
- 열전도율이 높아 화재 위험이 높음
- 건축 구조물의 수명이 짧음


철근 대체제 GFRP REBAR

GFRP(Glass Fiber Reinforced Polymer) 소재의 혁신적인 콘크리트 보강근.

유리섬유로 이루어진 플라스틱계의 복합재료로 경량, 내식성, 고강도의 뛰어난 재료.

친환경 · 복합 신소재 유리섬유 콘크리트 보강근

ECO BAR

금속 철근

강함	내부식성	약함
800~1300 MPa	인장 강도	300~500 MPa
240g/m (철근의 1/4)	무게	995g/m
낮음	건축 비용	높음
건축수명 연장 (반영구적)	건축 수명	짧음
0,35 W/m°c	열 전도성	46 W/m℃
45~55GPa	탄성 계수	200GPa
높음	가격 경쟁력	낮음

(D13mm 기준)

≫ 등 ECO BAR 특장점

01 철근대비 약 20% 저렴함

- · 철근 대비 약 20% 저렴한 금액으로 공사비 절감효과
- · 철근 가격의 큰 변동성 및 상승 가능 (철근의 원자재인 철광석, 원료탄의 가격 상승과 탄소 배출 규제에 따른 생산 감소 등의 이슈)

02 녹과 부식 안생김

- · 유리섬유(GFRP)의 소재 특성상 녹과 부식이 없다.
- · 해양 환경의 구조물 등 부식환경에 노출된 구조물에 매우 강하다.

03 2배 강한 인장강도

- · 철근 대비 2.5 ~ 3배 이상의 강한 인장강도
- · GFRP의 인장강도는 800~ 1300Mpa로 철근의 인장강도는 400Mpa 의 두배 이상이다.

04 약 1/4 가벼움

- · 철근 대비 1/4 가벼워, 시공성과 현장 근로자의 안정성 증대
- ㆍ 저중량으로 운송 물류비 절감
- · [산업안전보건법] 제39조 근골격계 부담작업의 범위에 해당되지 않음.

05 열팽창계수. 균열 無

- · GFRP 보강근이 철근에 비해 열팽창계수가 콘크리트와 유사함.
- · 날씨, 계절 변화에 따른 외부 열로 인해 수축과 팽창 반복 과정에서 GFRP 보강근은 균열, 파손에 미치는 영향이 낮다.

06 비자성 · 비전도성

- · 열전도성이 없는 부도체 GFRP보강근은 단열 특성 있음.
- · 자기장 발생, 높은 전류를 요구하는 섬세하는 회로, 레이더기지, MRI 장비 등 군사 및 의료시설 구조물에 아주 적합함.

○7 강한 내화학성

- ㆍ겨울철 제설제(염화물)가 사용되는 교량 바닥판, 도로에 우수함
- · 내약품성으로 정유공장, 화학공장 바닥재로 아주 적합함.

08 친환경 건설자재

- · GFRP 보강근의 생산 과정에서 고철, 석회석 등 사용하지 않아 탄소 배출량이 50% 이상 적은 친환경 건설 자재
- · 생산에 사용하는 함침제는 친환경 재생수지로 만든 것이 특징.

▶ 등 ECO BAR 국내 시공 및 해외 적용사례

강한 내구성을 가진 GFRP 보강근

- · 공장 및 물류센터 바닥 기초 슬라브
- · 전원 주택 및 상가 건축물
- · 맨홀, 수로관 (PC 암거)

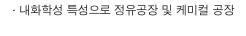
• 염무에 노출된 해안 공사

· 강한 내구성이 요구되는 공항 바닥 슬라브

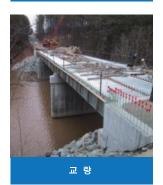
해양 구조물에 노출된 콘크리트 구조

· 적재용 데크 슬라브

해양구조물 (RC구조 앵커)


· 방파제, 부두, 해안 옹벽, 소구조물 · 해양 프리캐스트 (RC구조의 앵커, 부잔교) · 해양플랜트

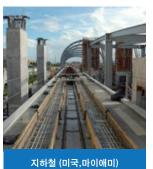
• 수영장 데크


녹과 부식에 강한 GFRP 보강근

ㆍ겨울철 제설제(염화물)에 교량 바닥판

· 고속도로 및 일반 도로 바닥판

· 맨홀, 집수정, 배수로 구조물



고압 및 전자기장에 노출된 콘크리트

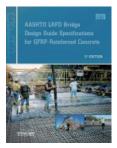
- · 철도 및 지하철 바닥 레일
- · MRI 장비 의료시설 구조물
- · 군사 레이더 영역의 커버구조물 및 데크
- · 고전압 발전소 및 변전소
- · 통신 관련 시설물

프리캐스트

F1 경주용 자동차경기장

≫ 등 ECO BAR 구조 설계 가이드

국내 설계 가이드



[KCI -M-19-001,2019] FRP 보강근 콘크리트 구조설계지침

[KS F ISO 10406-1, 2017] 콘크리트용 섬유강화폴리머(FRP)보강재 -시험방법 -제1부: FRP 보강근 및 격자

해외 설계 가이드

[ACI 440 1R-06], [ACI 440 1R-15] GFRP보강근 구조 설계기준 가이드 [AASHTO,2009] 교량바닥판, 난간 설계 기준

일본 [JSCE,1997]

캐나다

[CAN/CSA S806-12] GFRP보강근 구조 설계기준 [CHBDC CAN/CSA-S6-06 / -14] 고속도로 교량 구조설계 가이드

유럽 [FIB CODE ,1997] RC구조의 FRP보강

▶ 등 ECO BAR 생산 제조 기술 및 공정

(주)ASP는 ECO BAR 생산을 위한 복합 신소재 사용과 신공법 공정으로 차별화된 제조기술, 구조설계를 통해 안정된 품질을 유지하여 혁신적인 제품을 생산합니다.

제품 규격	외경 10mm ~ 30mm 제품 생산 가능(특수사양 협의)
적용 기술	Pultrusion(인발성형) 생산 방식의 특허 기술 적용 제품
재료 특성	유리섬유 복합재료를 사용하여 철근보다 고강도 저중량 제품
제품 특성	부식이 없고 인장강도가 높아서 건축물 품질 및 수명 연장
적용 기술	토목, 건축, 해양구조물, 도로, 철도, 교량 및 터널공사 등

· 원자재 투입

• 수지 함침

02

• 와인딩

03

열/냉각 경화

04 ㆍ제품 컷팅 05

ㆍ제품 사출

품질 및 기술 인증

01

- · 벤처기업 확인서
- · 중소기업 확인서
- · 기업부설연구소 인증서
- · 품질경영시스템 인증서
- 환경경영시스템 인증서
- · 국가공인 시험성적서

